Метаданни
Данни
- Включено в книгата
- Оригинално заглавие
- A Short History of Nearly Everything, 2003 (Пълни авторски права)
- Превод отанглийски
- Маргарита Хаджиниколова, 2005 (Пълни авторски права)
- Форма
- Научен текст
- Жанр
- Характеристика
-
- Няма
- Оценка
- 5,3 (× 39гласа)
- Вашата оценка:
Информация
Издание:
Бил Брайсън. Кратка история на почти всичко
Отговорен редактор: Ваня Томова
Редактор: Илия Иванов
Технически редактор: Божидар Стоянов
Предпечатна подготовка: Мирослав Стоянов
Издателство Сиела — софт енд пъблишинг, 2005
ISBN 954–649–793–2
Transworld publishers, a division of The Random House Group Ltd
История
- —Добавяне
- —Редакция: slacker
9. Могъщият атом
Докато Айнщайн и Хъбъл с успех разкривали огромната по мащаби структура на космоса, други се опитвали да разберат нещо, което е по-близко, но по свой собствен начин също толкова далечно: малкия и много мистериозен атом.
Големият физик от Калифорнийския технологичен институт Ричард Фейнман веднъж отбелязал, че ако трябва да се сведе научната история до едно важно твърдение, то ще бъде „Всички неща са направени от атоми.“ Те са навсякъде и съставляват всичко. Да погледнем наоколо. Всичко е атоми. Не само твърдите неща като стените, масите и канапетата, но и въздухът помежду им. И те са там в такива количества, които човек не може и да си представи.
Основното работно подреждане на атомите е молекулата (от латински за „малка маса“). Една молекула е просто два или повече атома, работещи заедно в повече или по-малко стабилна подредба: ако прибавим два атома водород към един атом кислород, получаваме молекулата на водата. Химиците са склонни да мислят в молекули, а не в елементи, точно както писателите са склонни да мислят с думи, а не с букви, така че те броят молекулите, а те са многобройни, и това е най-малкото, което можем да кажем за тях. На морското равнище, при температура 0 градуса по Целзий един кубически сантиметър въздух (това е пространство с приблизителен размер на средно зарче за игра) ще съдържа 45 милиарда милиарда молекули. И те са във всеки един кубически сантиметър около нас. Помислете колко много кубически сантиметри има по света извън прозореца ви — колко много зарчета ще трябват, за да се изпълни гледката. После помислете колко ще са нужни, за да се изгради една вселена. Накратко, атомите са в голямо изобилие.
Те са също така и фантастично дълготрайни. Поради това, че са толкова дълговечни, атомите наистина са навсякъде. Всеки атом, който е във вас, със сигурност е преминал през няколко звезди и е бил част от милиони организми, за да стане част от вас. Всеки човек има толкова многочислени атоми и бива толкова мощно рециклиран при смъртта си, че съществен брой от атомите ни — предполага се до милиард за всеки от нас — някога вероятно са принадлежали на Шекспир. Милиард още са дошли от Буда и Чингис Хан, и Бетовен, и която и да е друга историческа личност, която ви дойде наум. (Очевидно персонажите трябва да са исторически по-далечни, тъй като на атомите им са нужни няколко десетилетия, за да бъдат напълно разпределени повторно; колкото и да ви се иска, още не сте едно с Елвис Пресли.)
Така че всички ние сме превъплъщения — макар и краткотрайни. Когато умрем, атомите ни ще се разединят и ще преминат в нещо друго — като в частица от лист или друго човешко същество, или капка роса. Атомите обаче практически продължават да съществуват вечно. Никой всъщност не знае колко дълго ще просъществуват, но според Мартин Рийс вероятно около 10 на степен 35 години — число, което е толкова голямо, че дори и аз с удоволствие го изписвам в степенна форма.
Преди всичко атомите са много мънички — изключително мънички наистина. Половин милион от тях, подредени един до друг, могат да се скрият зад човешки косъм. В такъв мащаб не можем да си представим отделния атом, но, разбира се, можем да опитаме.
Да започнем с един милиметър, което представлява чертичка ето толкова дълга: — Сега нека си представим тази чертичка, разделена на хиляди еднакви части. Всяка от тези части е микрон. Това е мащабът на микроорганизмите. Например типичен paramecium е около два микрона широк — 0,002 мм, което наистина е много малко. Ако искате да видите с невъоръжено око как плува парамециум в капка вода, трябва да уголемите капката, докато стане 12 метра. Ако искате обаче да видите атомите в същата капка, тя трябва да стане с диаметър 22 километра.
Атомите, с други думи, въобще съществуват в мащаб от друг порядък. За да получим мащаба на атомите, трябва да вземем всеки един от тези отрязъци от микрони и да ги разрежем на десет хиляди по-фини части. Това е мащабът на атома: една десетмилионна от милиметъра. Те са до такава степен незначителни по големина, че са извън обсега на въображението ни, но можете да получите представа за пропорциите, като имате предвид, че размерът на един атом се отнася към чертичка с дължина един милиметър така, както дебелината на лист хартия се отнася към височината на Емпайър Стейт Бийлдинг.
Разбира се, изобилието и изключителната трайност на атомите ги прави толкова полезни, а незначителният им размер води до затруднение при тяхното откриване и изследване. Осъзнаването, че атомите имат тези три характеристики — малки, многобройни, практически неразрушими — и че всички неща са направени от тях, първо хрумнало не на Антоан Лоран Лавоазие, както може да се очаква, или дори на Хенри Кавендиш, или на Хъмфри Дейви, а на свободния и не особено образован английски квакер на име Джон Далтон, който срещнахме за първи път в главата по химия.
Далтон е роден през 1766 г. на края на Лейк Дистрикт, близо до Кокермаут, в семейство на бедни, но набожни тъкачи. (Четири години по-късно поетът Уилям Уърдзуърт също ще се появи на този свят в Кокермаут.) Бил изключително умен студент — толкова умен, че на невероятно младата възраст дванайсет години му възложили да отговаря за местното квакерско училище. Това говори толкова за училището, колкото и за преждевременното развитие на Далтон, но е вероятно и да не е съвсем така: знаем от дневниците му, че по това време четял написаната от Нютон Principia в оригинал на латински, и други трудове, които били също толкова трудни. На петнайсет години, все още началничестващ в училището, си намерил работа в близкия град Кендал, а десетилетие по-късно се преместил в Манчестър, като почти не се и помръднал от там през останалите петдесет години от живота си. В Манчестър бил във вихъра си като интелектуалец — пишел книги и трудове на теми, като се почне от метеорология и се стигне до граматика. Страдал от цветна слепота и това състояние дълго време било наричано далтонизъм заради изследванията му в тази област. Но обемистата книга, наречена Нова система на химичната философия, издадена през 1808 г., била тази, която създала репутацията му.
Там, в кратка глава от само пет страници (от над деветстотинте в книгата), хората, занимаващи се с наука, за първи път се запознали с атомите и по-точно с нещо наподобяващо съвременното разбиране за тях. Простичкото схващане на Далтон било, че в основата на всяка материя са изключително малки неделими частици. „Да създадем или унищожим частица водород е като да се опитаме да включим нова планета в слънчевата система или да заличим някоя, която вече съществува“ — пише той.
Нито идеята за атома, нито самият термин са нещо ново. Развити са от древните гърци. Приносът на Далтон е, че насочил вниманието си върху въпроса за относителния им размер, характера на тези атоми и как са свързани. Знаел е например, че водородът е най-лекият елемент, така че му дал атомно тегло едно. Смятал, че водата се състои от седем части кислород към един водород, така че дал на кислорода атомно тегло седем. По този начин достигнал до относителното тегло на познатите елементи. Не винаги бил изключително точен — всъщност атомното тегло на кислорода е шестнайсет, а не седем — но принципът е логичен и формира основата на цялата модерна химия и останалата част от съвременната наука.
Далтон става известен с този труд — макар и по скромен начин, типичен за английските квакери. През 1826 г. френският химик П. Ж. Пелетие отишъл в Манчестър, за да се срещне с атомния герой. Пелетие очаквал да го намери как работи в огромна институция, но бил изумен, като разбрал, че преподава елементарна математика на момчета в едно малко училище, намиращо се на затънтена улица. Според историка Е. Дж. Холмярд, като видял великия учен, смутеният Пелетие смутолевил:
„Имам ли честта да разговарям с мосю Далтон?“ — тъй като не повярвал на очите си, че това е химикът от европейска величина, който преподава на момчета най-елементарни неща. „Да“-казал непринудено квакерът. „Ще бъдете ли така добър да седнете, докато обясня на този момък аритметиката.“
Въпреки че Далтон се опитал да бъде далеч от всякакви почести, бил избран в Кралското дружество против волята си, обсипан бил с медали и му била дадена солидна държавна пенсия. Когато умира през 1844 г., четирийсет хиляди души отиват да се преклонят пред ковчега му, а погребалният кортеж бил дълъг 3 километра. Статията за него в Речник на националните биографии е една от най-дългите, конкурираща се само с тези на Дарвин и Лайъл сред учените от деветнайсети век.
Век след като Далтон прави предположението си, то си остава напълно хипотетично, а няколко изтъкнати учени — по-точно виенският физик Ернст Мах, на когото е наречена скоростта на звука, казал съмнение за съществуването на атомите въобще. „Атомите не могат да бъдат доловени от сетивата ни… те са неща на мисълта“ — пише той. Съществуването на атомите било възприемано с такова съмнение, особено в немскоговорещите страни, че се твърди, че е изиграло роля в самоубийството през 1906 г. на великия теоретичен физик и атомен ентусиаст Лудвиг Болцман.
Именно Айнщайн бил този, който първи дал неопровержими доказателства за съществуването на атомите с труда си за Брауновото движение през 1905 г., но това не привлякло голямо внимание, а и самият Айнщайн скоро бил погълнат от работата си върху общата теория на относителността. Така че първият истински герой на атомния век, ако не и първата фигура на сцената, бил Ърнест Ръдърфорд.
Ръдърфорд е роден през 1871 г. в „черните блокове“ на Нова Зеландия, в семейство, което емигрирало от Шотландия, за да отглежда лен и много деца (ако перифразираме Стивън Уайнбърг). Растял в далечна част на далечна страна и бил толкова настрани от центъра на науката, колкото въобще било възможно, но през 1895 г. спечелил стипендия, която го отвежда в лабораторията Кавендиш в Кеймбриджския университет, който става най-горещото място в света в областта на физиката.
Физиците са всеизвестни със пренебрежителното си отношение към учените от други области на науката. Когато съпругата на великия австрийски физик Волфганг Паули го напуснала заради химик, той не могъл да повярва. „Ако беше взела бикоборец, щях да я разбера“ — отбелязал той в почуда. „Но химик…“
Било чувство, което Ръдърфорд би разбрал. „Всяка наука е или физика, или колекциониране на марки“ — казал веднъж и оттогава това е цитирано много пъти. Така че има очарователна ирония във факта, че когато спечелва Нобелова награда през 1908 г., тя е за химия, а не за физика.
Ръдърфорд бил човек с късмет — късметлия да бъде гений, но още по-късметлия да живее във време, когато физиката и химията били толкова вълнуващи, и толкова съвместими (въпреки неговото отношение). Те никога повече няма да се припокриват по такъв приемлив начин.
Независимо от успеха си Ръдърфорд не бил особено блестящ ум и всъщност бил ужасно зле по математика. Често по време на лекции толкова се уплитал в собствените си уравнения, че се отказвал по средата и казвал на студентите сами да се оправят с тях. Според дългогодишния му колега Джеймс Чадуик — откривател на неутрона, дори не бил особено добър в експериментаторството. Просто бил упорит и с широки възгледи. Вместо блестящ ум притежавал проницателност и вид дързост. Умът му, по думите на един биограф „винаги работел, насочен към границите на познанието, колкото се може по-надалеч, а това стигало доста по-надалеч в сравнение с другите хора.“ Изправен пред трудноразрешим проблем, бил готов да работи върху него по-упорито и по-дълго в сравнение с повечето хора, и бил по-склонен да възприема неортодоксални решения. Неговият най-голям пробив в науката се осъществил, защото бил готов да прекарва изключително дълги часове, седейки пред апаратура, за да брои сцинтилации на алфа-частици — както били известни тогава — работа, която обикновено била възлагана другиму. Бил един сред първите — навярно бил първият — които забелязали, че ако бъде използвана мощността, присъща на атома, може да се направят бомбите достатъчно мощни, така че „този стар свят да изчезне в облак дим.“
Физически бил едър и с вид на преуспял човек, с глас, който карал плахите да се свиват. Веднъж, когато било казано, че Ръдърфорд щял да участва в радиопредаване отвъд Атлантика, един колега сухо попитал: „Защо ще използва радио?“ Притежавал и доста голямо количество самочувствие, излъчващо добродушие. Когато веднъж някой му казал, че той като че ли винаги бил на гребена на вълната, Ръдърфорд отвърнал — „Ами, в края на краищата, аз направих вълната, нали?“ Ч. П. Сноу си спомня как веднъж при шивач в Кеймбридж дочул Ръдърфорд да отбелязва: „Всеки ден увеличавам ръста си. И способността си да разсъждавам.“
Но ръстът и славата му били все още далеч от апогея си през 1895 г., когато отишъл да работи при Кавендиш.[1] Това бил период, изключително изпълнен със събития в науката. В годината, когато Ръдърфорд пристигнал в Кеймбридж, Вилхелм Рьонтген открил рентгеновите лъчи във Вюрцбургския университет в Германия, а през следващата година Анри Бекерел открил радиоактивността. Самият Кавендиш щял да поеме по пътя на един дълъг период на величие. През 1897 г. Дж. Дж. Томсън и колегите му ще открият там електрона; през 1911 г. С. Т. Р. Уилсън ще произведе там първия детектор на частици (както ще видим по-нататък); а през 1932 г. Джеймс Чадуик ще открие там неутрона. Още по-нататък в бъдещето — през 1953 г., пак в лабораторията на Кавендиш Джеймс Уотсън и Франсис Крик ще открият структурата на ДНК.
В началото Ръдърфорд работел върху радиовълните, постигайки известни успехи — успял да предаде ясен сигнал на разстояние повече от километър и половина, което е доста добро постижение за времето си — но се отказал, когато негов по-висшестоящ колега го убедил, че радиото нямало голямо бъдеще. Като цяло обаче, Ръдърфорд не преуспявал при Кавендиш. След три години прекарани там, чувствайки, че е в застой, получил пост в МакДжилския университет в Монреал и тук започнал дългия си и стабилен възход към величието. Когато спечелил Нобелова награда (според официалните цитати за изследвания върху разпада на елементите и химията на радиоактивните вещества), вече се бил преместил в Манчестърския университет, и именно там фактически щял да работи върху най-значимите си трудове за откриване на строежа и същността на атома.
В началото на двайсети век вече се знаело, че атомите са изградени от частици — откриването на електрона от Томсън било установило това — но не се знаело колко частици имало, как те са свързани или каква форма имат. Някои физици смятали, че атомите имат форма на куб, тъй като кубовете могат да се подреждат така добре, че да не се губи пространство. По-общоприетото схващане било обаче, че атомите приличат повече на кифла със стафиди или пудинг със сливи: плътен, солиден обект, който е с положителен заряд, но осеян с електрони с отрицателен заряд като стафидите в кифлата.
През 1910 г. Ръдърфорд (с помощта на студента си Ханс Гайгер, който по-късно създава детектора на радиация, наречен на негово име) бомбардира златно фолио с хелиеви атоми или алфа-частици.[2] За изненада на Ръдърфорд, някои от частиците, като че ли отскачали. Както той казал, било като че ли бил изстрелял 30-сантиметров снаряд в лист хартия и той отскочил в скута му. Това просто не можело да се случва. След значителни разсъждения осъзнал, че може да има само едно възможно обяснение: частиците, които отскачали, се удряли в нещо малко и плътно в центъра на атома, докато другите частици си проправяли път безпрепятствено. Ръдърфорд осъзнал, че атомът е най-вече празно пространство с много плътно ядро в центъра. Това било изключително удовлетворяващо откритие, но то извеждало веднага един проблем. Според всички закони на конвеционалната физика атомите не би трябвало да съществуват.
Нека спрем за малко и да разгледаме структурата на атома — такава, каквато я знаем днес. Всеки атом е изграден от три вида елементарни частици: протони, които имат положителен електричен заряд; електрони — с отрицателен електричен заряд: неутрони, които нямат електричен заряд. Протоните и неутроните са съставна част на ядрото, докато електроните се движат извън него. Броят на протоните дава на атома химичната му идентификация. Атом с един протон е атом на водорода, с два протона е хелий, с три протона — литий, и така нагоре по скалата. Всеки път, когато прибавим протон, се получава, нов елемент. (Тъй като броят на протоните в един атом винаги се уравновесява с еднакъв брой електрони, понякога се пише, че броят на електроните е този, който определя елемента; стига се до едно и също нещо. На мен ми беше обяснено, че протоните дават на атома неговата идентичност, а електроните — характера му.)
Неутроните не оказват влияние върху идентичността на атома, но те променят масата му. Броят на неутроните е обикновено еднакъв с този на протоните, но може да варира малко нагоре и надолу. Ако прибавим един или два неутрона, ще получим изотоп на същия елемент. Термините, които чуваме във връзка с технологията за датиране в археологията, се отнасят за изотопите — например въглерод–14 е атом въглерод с шест протона и осем неутрона (14 е сума от двата броя).
Неутроните и протоните съставляват ядрото на атома. Ядрото на атома е мъничко — само една милионна от милиардната част от обема на атома — но е фантастично плътно, тъй като практически съдържа цялата маса на атома.
Както Кропър го е казал, ако атомът се разшири до размера на катедрала, ядрото ще е с размер като на муха — но муха, която е много хиляди пъти по-тежка от катедралата. Именно тази просторност — тази огромна, неочаквана обширност е накарала Ръдърфорд да се замисли през 1910 г.
Все още идеята, че атомите съдържат предимно празно пространство, и че солидността, която изпитваме около нас, е илюзия, е удивителна. Когато два обекта се срещнат в реалния свят — най-често за илюстрация се използват билярдни топки — всъщност те не се удрят една в друга. „По-точно“ — както Тимъти Ферис обяснява — „отрицателно заредените полета на двете топки ги отблъскват една от друга… ако не е електричният им заряд, те биха могли като галактиките да минат една през друга невредими“. Когато седите на стол, всъщност не седите там, а се издигате върху му на височина един ангстрьом (стомилионна от сантиметъра), защото вашите електрони и неговите електрони се съпротивляват твърдо на по-голяма близост.
Представата, която всеки има за атома, е как електрон-два кръжат около ядро като планети, движещи се в орбита около слънце. Този образ е създаден през 1904 г. и се основава предимно на умна догадка на японския физик Хантаро Нагаока. Той е напълно погрешен, но въпреки всичко е траен. Както Айзък Азимов обичаше да отбелязва, той допринесе за вдъхновението на поколения писатели на научна фантастика, създаващи истории за светове в светове, в които атомите стават малки населени слънчеви системи или нашата Слънчева система става просто една прашинка, част от нещо по-голямо. Дори сега CERN, Европейската организация за ядрено развитие, използва представата, създадена от Нагаока, за лого на уеб-сайта си. Всъщност, както физиците скоро са разбрали, електроните въобще не са като движещи се по орбити планети, а приличат повече на перки на въртящ се вентилатор, успявайки да запълнят едновременно всяка част от пространството в орбитите си (но със съществената разлика, че перките на вентилатора само изглеждат, че са едновременно навсякъде, а електроните са).
Излишно е да се каже, че много малко от това е било разбираемо през 1910 г. или пък доста години след това. Откритието на Ръдърфорд поставило някои големи и неотложни проблеми, като не на последно място бил този, че никой електрон не може да обикаля около ядрото, без да претърпи сблъсък. Според конвенционалната теория на електродинамиката един движещ се електрон много бързо ще изчерпи енергията си — само за около миг — и спираловидно ще се придвижи до ядрото, без да претърпи пагубни последици. Съществувал също и проблемът как протоните с положителните си заряди ще си намерят място в ядрото, без да взривят себе си и останалата част от атома. Очевидно каквото и да ставало там някъде в света на много малкото, то не се управлявало от законите, приложими за макросвета, към който се отнасят нашите очаквания.
Когато физиците започнали да дълбаят в субатомното царство, осъзнали, че то не било просто различно от това, което знаем, но различно от всичко, което въобще можем да си представим. „Тъй като атомното поведение е толкова различно от обикновеното поведение“, отбелязал веднъж Ричард Фейнман, „много е трудно да се свикне с него и изглежда странно и загадъчно на всеки — както на начинаещия, така и на опитния физик.“ Когато Фейнман изказал това мнение, физиците били имали вече цял век, за да се приспособят към странното поведение на атомите. Така че нека си представим как Ръдърфорд и колегите му са се чувствали в началото на 1910-те, когато всичко било съвсем ново.
Един от хората, работещи с Ръдърфорд, бил кроткият и приветлив млад датчанин на име Нилс Бор. През 1913 г., когато размишлявал върху строежа на атома, на Бор му дошла на ум една толкова вълнуваща идея, че отложил сватбеното си пътешествие, за да напише труд, който станал епохален. Тъй като физиците не можели да видят с очите си нещо, което е толкова малко като атома, те се опитали да разгадаят строежа му, според това какво е поведението му, когато извършвали нещо с него, както Ръдърфорд бил направил, като бомбардирал лист от златно фолио с алфа-частици. Понякога, което не е изненадващо, резултатите на тези експерименти били озадачаващи. Една от загадките, която продължила дълго време, била с отчетите в спектъра на дължините на вълните на водорода. Отчетите показвали, че атомите на водорода излъчват енергия само с определени дължини на вълните. Било като че ли някой, който е под наблюдение, все се появява на определени места, но никога не е забелязан да пътува между тях. Никой не можел да обясни, защо това било така.
Докато размишлявал върху този проблем, на Бор му хрумнала идея как да го разреши и набързо написал известния си труд. Наречен За строежа на атомите и молекулите, в него се обяснявало как електроните могат да избягват падането си върху ядрото, като се изказвало предположението, че те могат да заемат само добре дефинирани орбити. Според новата теория електрон, движещ се между орбитите, ще изчезва от една и ще се появява веднага отново в друга, без да минава през пространството помежду им. Тази идея — известният „квантов скок“ — разбира се, е абсолютно странна, но била твърде добра, за да не е вярна. Според нея не само че електроните бивали предпазвани от катастрофално движене по спирала към ядрото; тя давала обяснение на озадачаващите дължини на вълните. Електроните се появявали само в определени орбити, защото можели да съществуват само в определени орбити. Това било зашеметяващо прозрение и за него Бор получава Нобелова награда за физика през 1922 г., една година след като Айнщайн получава своята.
Междувременно неуморният Ръдърфорд, завърнал се в Кеймбридж като наследник на Дж. Дж. Томсън начело на Кавендишката лаборатория, предлага модел, който обяснява, защо ядрата не експлодират. Забелязал, че вероятно ги възпира някакъв вид неутрализиращи частици, които нарича неутрони. Идеята била проста и удобна, но не и лесна за доказване. Колегата на Ръдърфорд — Джеймс Чадуик, посветил единайсет неуморни години в търсене на неутрони и накрая успял през 1932 г. Той също получава Нобелова награда за физика през 1935 г. Както Буурс и колегите му изтъкват в тяхната история по тази тема, забавянето на това откритие навярно е много хубаво нещо, тъй като овладяването на неутрона било от съществено значение за разработката на атомната бомба. (Тъй като неутроните нямат заряд, те не биват отблъсквани от електричните полета в сърцевината на атома и по този начин могат да бъдат изстрелвани като малки торпеда в атомното ядро, което дава началото на унищожителния процес, известен като делене на ядрото.) Ако неутронът е бил изолиран през 1920-те, отбелязват те, „голяма е била вероятността атомната бомба да бъде разработена първо в Европа, несъмнено от германците.“
Но, както стояли нещата, европейците били напълно погълнати опитвайки се да разберат поведението на електрона. Главният проблем, пред който били изправени, е, че електронът понякога имал поведението на частица, а понякога на вълна. Тази невъзможна двойнственост докарала физиците до полуда. През следващото десетилетие из цяла Европа яростно разсъждавали, пишели и предлагали конкуриращи се хипотези. Във Франция принц Луи-Виктор дьо Брой, потомък на херцогска фамилия, открил, че някои аномалии в поведението на електроните изчезвали, когато били възприемани като вълни. Наблюдението привлякло вниманието на австриеца Ервин Шрьодингер, който направил някои умели подобрения и измислил удобна система, наречена вълнова механика. Почти по същото време германският физик Вернер Хайзенберг предложил конкурентна теория наречена матрична механика. Тя била толкова сложна математически, че почти никой не я разбирал, включително и самият Хайзенберг („Дори не знам какво е матрица“ — отчаяно споделил с приятел Хайзенберг по едно време), но изглежда, че това разрешило някои проблеми, които вълните на Шрьодингер не успели да обяснят.
Резултатът бил, че във физиката имало две теории, основани на противоречиви идеи, които водели до еднакви резултати. Ситуацията била непоносима.
Накрая, през 1926 г. Хайзенберг предложил знаменит компромис, създавайки нова дисциплина, която станала известна като квантова механика. В центъра й бил принципът на неопределеността на Хайзенберг, според който електронът е частица, но частица, която може да бъде описана като вълна. Неопределеността, върху която е построена теорията, гласи, че можем да знаем или пътя, по който се движи електронът из пространството, или можем да знаем къде се намира той в даден момент, но не можем да знаем и двете.[3] Всеки опит да се измери едното, неминуемо ще попречи на другото. Това не е въпрос само на нуждата от по-прецизни инструменти; това е едно непроменимо свойство на вселената.
На практика това означава, че никога не можем да предскажем къде ще се намира един електрон в даден момент. Само можем да регистрираме вероятността му да бъде там. В известен смисъл, както го е казал Денис Овербай, електронът не съществува, докато не бъде забелязан. Или, казано малко по-различно, докато не бъде забелязан, електронът трябва да бъде смятан „че се намира едновременно навсякъде и никъде.“
Ако това изглежда объркващо, трябва да изпитаме известна утеха от това, че е било объркващо също и за физиците. Овърбай отбелязва: „Бор веднъж коментира, че ако човек не бъде шокиран, когато за първи път чуе за квантовата теория, той не разбира за какво става дума.“ Когато бил запитан как човек може да си представи атома, Хайзенберг отговорил: „Не се опитвайте.“
Така че атомът се оказал съвсем различен от представата, която повечето хора си били създали. Електронът не се движи около ядрото както една планета около слънцето, а придобива по-аморфния вид на облак. „Обвивката“ на атома не е някакво твърдо покритие, както някои илюстрации ни карат да си представяме, а просто най-външният от тези пухкави електронни облаци. Самият облак е по принцип само зона на статистическа вероятност, маркирайки района, отвъд който електроните много рядко се отклоняват. Така че атомът, ако може да се види, ще прилича повече на пухкава топка за тенис, отколкото на твърда метална сфера (но няма да прилича много и на двете, или въобще на нещо, което сме виждали; в крайна сметка, тук си имаме работа със свят, много различен от този, който виждаме около себе си.)
Изглеждало, като че ли няма край на неизвестното. За първи път, както го е казал Джеймс Трефил, учените се сблъскали „с част от вселената, която мозъците ни не са настроени да разбират“. Или, както се е изразил Фейнман, „нещата в малък мащаб се държат по съвсем различен начин от нещата в голям мащаб.“ Когато физиците задълбали по-надълбоко, осъзнали, че са открили свят, където не само че електроните скачали от една орбита на друга, без да преминават през междинно пространство, но материята можела да се появи от нищото — „ако“, по думите на Алън Лайтман от Масачузетския технологически институт — „изчезне отново с достатъчна бързина.“
Навярно най-интригуващата от квантовите невероятности е идеята, произтичаща от принципа за изключването на Волфганг Паули от 1925 г., гласящ, че всяка от субатомните частици в някои двойки, дори когато те са разделени на значителни разстояния, е в състояние веднага да „разбере“ какво прави другата. Частиците притежават свойство, наречено спин (въртене), и според квантовата теория в момента, в който определим спина на една частица, сродната й частица, независимо от това, колко далече се намира, веднага ще изпадне в състояние на спин в обратната посока и със същата скорост.
По думите на писателя учен Лоурънс Джоузеф, това е като че ли имате две идентични билярдни топки — едната в Охайо, а другата във Фиджи, и в момента, в който метнете едната топка и тя се завърти, другата веднага ще се завърти в обратната посока, и с точно същата скорост. По забележителен начин феноменът бил доказан през 1997 г., когато физиците от Женевския университет изпратили фотони в противоположни посоки на разстояние десет километра един от друг и демонстрирали, че въздействие върху единия провокира незабавно реакция на другия.
Нещата стигнали дотам, че на една конференция Бор изказал мнение за нова теория, че въпросът не е дали е налудничава, а дали е достатъчно налудничава. За да илюстрира неинтуитивния характер на квантовия свят, Шрьодингер предложил известния мисловен експеримент, в който хипотетична котка се поставя в кутия с един атом радиоактивно вещество, прикрепено към ампула с циановодородна киселина. Ако частицата се разпаднела в рамките на час, ще задвижи механизъм, който ще счупи мускала и ще отрови котката. Ако ли не, котката ще продължи да живее. Но ние не можем да знаем, какво се е случило, така че няма избор в научен план, освен да смятаме котката едновременно за 100% жива и 100% мъртва. Това означава, както отбелязва Стивън Хокинг с нотка на разбираемо вълнение, че човек не може да „предсказва бъдещи събития с точност, ако не е в състояние дори да измери точно сегашното състояние на вселената!“
Поради странностите й много от физиците и най-вече Айнщайн не харесвали квантовата теория или поне някои от аспектите й. Това било повече от иронично, тъй като именно в своя annus mirabilis от 1905 г. Айнщайн убедително дава обяснение как фотони от светлина могат понякога да имат поведение на частици, а понякога на вълни — централната идея на модерната физика. „Квантовата теория заслужава голямо внимание“ — отбелязал той учтиво, но всъщност не му се нравела. „Господ не си играе на зарове“ — казал той.[4]
Айнщайн не можел да понася идеята, че Господ може да създаде вселена, в която някои неща остават завинаги неразбираеми. Нещо повече, идеята за действие от разстояние — че една частица е способна веднага да окаже въздействие върху друга на трилиони километри разстояние — напълно нарушавала специалната теория на относителността. Тя категорично твърдяла, че нищо не може да надмине скоростта на светлината и ето сега физици заявявали, че някак си на субатомно ниво информацията можела. (Никой, между впрочем, не е обяснил как частиците постигат това. Учените се справят с този проблем, според физика Якир Ахаранов — „като не мислят за него.“)
Най-вече съществувал проблемът, че квантовата физика внесла степен на безпорядък, който преди това не съществувал. Изведнъж били нужни два вида закони, за да се обясни поведението на вселената — квантовата теория за света на много малкото и теорията на относителността за по-голямата вселена отвъд. Гравитацията в теорията на относителността била гениална, обяснявайки защо планетите обикалят в орбита около слънцето или защо галактиките се събират в купове, но се оказало, че няма никакво влияние на ниво частици. За да се даде обяснение какво държи атомите да бъдат едно цяло, били нужни други сили и през 1930-те били открити две: голямата ядрена сила и малката ядрена сила. Голямата сила свързва атомите заедно и позволява на протоните да си стоят в ядрото. Малката сила се занимава с по-различни задачи, най-вече с контролиране на степента на определени видове радиоактивен разпад.
Малката ядрена сила, въпреки името си, е десет милиарда милиарда милиарда пъти по-силна от гравитацията, а голямата ядрена сила е още по-мощна — неизмеримо много всъщност — но влиянието им се простира само до много малки разстояния. Обхватът на голямата сила достига само до около 1/100 000 от диаметъра на атома. Ето защо ядрата на атомите са толкова компактни и плътни, и защо елементи с големи, препълнени ядра са обикновено нестабилни: голямата сила просто не може да обхване всички протони.
Резултатът от всичко това е, че физиката се сдобила с два вида закони — едни за света на миниатюрното и други за вселената въобще — които съществуват и действат отделно. На Айнщайн това също не му харесвало. Той посветил останалата част от живота си в търсене на начин за обединяването им, опитвайки се да открие теорията на великото обединение, и все не успявал. От време на време си мислел, че е успял, но все нещо се оплитало накрая. Времето минавало и той все повече се маргинализирал, и дори малко го съжалявали. Почти без изключение, пише Сноу — „колегите му смятали и все още смятат, че пропилял втората част от живота си“.
Другаде обаче нещата наистина прогресирали. Към средата на 1940-те учените достигнали положението, при което разбирали атома до степен на такава проницателност — както много ефективно демонстрирали през август 1945 г., като пуснали две атомни бомби над Япония.
До този момент физиците можели да бъдат извинени, че си мислят, че са овладели атома. Всъщност, всичко във физиката на елементарните частици щяло да стане още по-сложно. Но преди да започнем този малко изтощителен разказ, трябва да навлезем в един друг ход на събитията в нашата история, като разгледаме важни и полезни случки, свързани с алчност, измама, лоша наука, няколко случая на безсмислена смърт, и най-накрая с окончателното определяне на възрастта на Земята.